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Hinweis: Diese VL-Einheit ist
nicht klausurrelevant!
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Motivation
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Why AI4QA at all?

Insights from a roundtable of experts from industry, academia, and
government [Bannon & Laplante, 2024]:

AI to...
• ...automate repetitive tasks
• ...speed up workflows
• ...provide a "copilot" that can code, test, and anticipate challenges
• ...reduce mundane and difficult tasks: Approx. 40%–70% of the time is
spent on creating and testing code

3 / 36

©
20
25
by
Pr
of
.D
r.
A.
M
et
zg
er

https://doi.ieeecomputersociety.org/10.1109/MC.2024.3474789


Motivation AI Fundamentals AI4QA Applications Discussion References

Why AI4QA at all?

Applications of AI for QA:

• Increased automation; e.g.,
◦ Test case generation
◦ Automatic code reviews
◦ And also code generation (i.e., constructive QA)

• Continuous testing; e.g.,
◦ Seamless integration of AI into DevOps (AI-augmented DevOps) and CI/CD
pipelines
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Why AI4QA now?
Rapid increase of the performance and quality of modern AI algorithms that
are increasingly applied to a broader range of problems:

• Deep Supervised Learning
◦ Learning how to label a given input
◦ Training data: labeled training data (data + label)
◦ Example applications: image classification, spam detection, fraud detection

• DeepReinforcement Learning (Deep RL)
◦ Learning which actions to take in a given situation
◦ Training data: feedback (rewards) from the environment
◦ Example applications: game playing, robotics, control systems

• Generative AI (GenAI)
◦ Learning how to generate outputs based on "prompts"
◦ Training data: large (typically) unlabeled data sets
◦ Example applications: text, image, video, music generation

• Combination of AI algorithms
◦ Breakthrough example:Google DeepMind’s AlphaGo
◦ Famously defeated Lee Sedol (world’s best Go player)
◦ AlphaGo -TheMovie | Full award-winning documentary5 / 36
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AI Fundamentals
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Basic AI Concept
In general, twomain phases:

• Learning (aka. Training):
Create the AI model

• Inference (aka. Prediction):
Use the AI model to generate labels, actions, output

Learning AI Model Inference
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Classes of AI Algorithms
Modern, successful AI algorithms =Deep Learning:
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Deep Learning
Deep Learning AI model = Artificial Neural Network (ANN):

• Inspired by the biological neural networks that constitute animal brains

• Consist of interconnected nodes ("neurons") organized in layers

• Each neuron receives weighted inputs from other neurons, processes
them, and applies an activation function to produce an output

• Learning via adjusting weights of the connections between neurons

Source: https://www.index.dev/blog/what-is-llm9 / 36
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Deep Learning
Growing ANN size of modern AI systems:

• Example: Number of learnable parameters (= weights + biases1)
of modern LLMs

Source: Medium

1Biases shift activation function, helping ANN learn more complex patterns.
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Deep Learning
Threemain types of Deep Learning:

• Deep Supervised Learning: Learning from labeled data

CAT

DOG 👍

👍POSITIVE NEGATIVE

REWARD

• Generative AI: Learning from unlabeled data
CAT

DOG 👍

👍POSITIVE NEGATIVE

REWARD

• Deep Reinforcement Learning: Learning from feedback

👍

👍
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AI4QA Applications
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GenAI for Code / Test Case Generation

By using Large LanguageModels (LLMs), such as:

• OpenAI ChatGPT (USA)
• Google Gemini (USA)
• Meta LLaMA (USA)
• Anthropic Claude (USA)
• AI2 Tülu (USA)
• Perplexity.AI (USA)
• xAI Grok (USA)
• InceptionLabs Mercury (USA)
• Alibaba Qwen (China)
• DeepSeek (China)
• Aleph Alpha Luminous (Germany)
• Mistral Le Chat (France)
• Open Euro LLM (EU – in preparation)
• ...

Info: Access to "commercial" versions of several LLMs via UDE’s ChatAI
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GenAI for Code Generation

Simple example:

LIVE Demo...

Prompts:

1. Generate Java code that converts Fahrenheit to Centigrade

2. Catch wrong temperature values

3. Improve the code

4. Improve the code

5. Improve the code
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GenAI for Code Generation

Current performance of GenAI [May 2025 Paper]:

• OpenAI’s SWE Lancer Benchmark: Analysis of how GenAI can complete
1,400 real development andmanagement tasks

• Best performing AI model could successfully complete 26.2% of the
development tasks

(IC = individual contribution)
15 / 36
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GenAI for Test Case Generation
LIVE Demo

Prompt:The following Java program is given:

public class TemperatureConverter {

public static double fahrenheitToCelsius(double fahrenheit) {

return (fahrenheit - 32) * 5/9;

}

public static void main(String[] args) {

double fahrenheit = 98.6; // Example temperature

double celsius = fahrenheitToCelsius(fahrenheit);

System.out.printf("%.1f F is equal to %.1f C%n", fahrenheit, celsius);

}

}

Generate a set of JUnit test cases that meet the following criteria:
Representative: Informative about untested cases
Error-prone: High probability of revealing errors
Non-redundant: Highest possible new coverage with each new test case
Economical: Optimal within the given budget
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GenAI for Test Case Generation
Integration into development environments; e.g., VisualStudio:

Note: The above-presented approaches to test case generation do not use the
software’s specification/requirements, which should be the actual source for

determining the expected output!
Instead, they use their understanding of programming paradigms, common
patterns, the function’s name, docstrings, and comments to infer the

software’s likely purpose.
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GenAI for Automatic Code Review

Example tools:

• GitHub Copilot:
◦ Code suggestions
◦ Auto-completions (constructive QA during programming)

• Amazon CodeGuru Reviewer:
◦ Code analysis for potential bugs, security vulnerabilities, and performance
issues

◦ Recommendations for code improvement

• Snyk DeepCode AI:
◦ Identify security bugs
◦ Suggest fixes
◦ Uses combination of AI techniques (deep supervised learning to recognize
patterns in code associated with bugs + GenAI to suggest bug fixes)
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GenAI for Automatic Code Review

But: code reviews are so muchmore than just finding defects and improving
code quality!

Source: Award keynote at FSE 2025: Alberto Bacchelli, Christian Bird: Expectations,
outcomes, and challenges of modern code review. ICSE 2013
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Discussion
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Challenges and (Current) Limitations of AI4QA

Reproducibility (also see [Bannon & Laplante, 2024]):

• GenAI never produces exactly the same output (cf. "random noise")

• Even for same prompt, AI most likely will not produce the same QA
artifacts/results

• Might only be controlled to a certain degree via model configuration (e.g.,
setting "temperature" and "top_p" of an LLM to zero)

Source: https://neurips.cc/virtual/2024/poster/95832
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Challenges and (Current) Limitations of AI4QA
Bias (also see [Bannon & Laplante, 2024]):

• AI model may perpetuate biases of training data

• Could lead to inaccurate or unfair QA results

• Example: LLM prompt: "Draw images of watches showing 12:00"

• What most LLMs (even the most recent versions) will give you:
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Challenges and (Current) Limitations of AI4QA
CleverHans Effect:

• Gen AI models may learn from irrelevant features of the training data
◦ Example: Learning from handwritten notes instead the actual medical image
◦ Clever Hans was a horse that appeared to perform arithmetic and other
intellectual tasks during exhibitions in Germany in the early 20th century

◦ A psychologist demonstrated that Hans was not actually performing these
mental tasks, but was watching the reactions of his trainer.

◦ Hans responded directly to involuntary cues in the body language of the
human trainer, who was entirely unaware that he was providing such cues.

Source: Wikipedia23 / 36
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Challenges and (Current) Limitations of AI4QA
Data Pollution (aka. Data Contamination):

• T evaluate and compare performance of Gen AI solutions benchmark data
sets are typically used

• But: GenAI model (e.g., LLM) may have been inadvertently or intentionally
exposed to the benchmark data during training or fine-tuning!
⇒GenAI model has already seen the ’correct’ solution!

• Consequences:
◦ Artificial Overestimation: GenAI performance will be artificially inflated
◦ Compromised Evaluation Integrity: Purpose of benchmark is to objectively
measure a technique’s performance on unseen data. Data contamination
undermines this integrity, making it difficult to accurately compare different
techniques

◦ Poor Real-World Performance: A GenAI model that excels on a contaminated
benchmark may perform poorly in real-world applications where it encounters
truly novel and diverse data.
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Challenges and (Current) Limitations of AI4QA
Resource Usage / Sustainability:

• Energy efficiency of AI hardware improves by ca. 40% per year

• But: AI models become increasingly larger
→ elimination of hardware efficiency gains

Table of Contents 71

Artificial Intelligence
Index Report 2025

Chapter 1 Preview

Highlight:  

Energy Efficiency and Environmental Impact
Training AI systems requires substantial energy, making 
the energy efficiency of machine learning hardware 
a critical factor. Epoch AI reports that ML hardware 
has become increasingly energy efficient over time, 
improving by approximately 40% per year. Figure 1.4.5 
illustrates the energy efficiency of Tensor-FP16 precision 

hardware, measured in FLOP per watt. For instance, the 
Nvidia B100, released in March 2024, achieved an energy 
efficiency of 2.5 trillion FLOP per watt, compared to the 
Nvidia P100, released in April 2016, which reported 74 
billion FLOP per watt. This means the B100 is 33.8 times 
more energy efficient than the P100.

1.4 Hardware
Chapter 1: Research and Development
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Figure 1.4.5
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Despite significant improvements in the energy efficiency 
of AI hardware, the overall power consumption required 
to train AI systems continues to rise rapidly. Figure 1.4.6 
illustrates the total power draw, measured in watts, for 
training various state-of-the-art AI models. For example, 
the original Transformer, introduced in 2017, consumed 
an estimated 4,500 watts. In contrast, PaLM, one of 
Google’s first flagship LLMs, had a power draw of 2.6 
million watts—almost 600 times that of the Transformer. 
Llama 3.1-405B, released in the summer of 2024, 
required 25.3 million watts, consuming over 5,000 times 
more power than the original Transformer. According to 

Epoch AI, the power required to train frontier AI models 
is doubling annually. The rising power consumption of 
AI models reflects the trend of training on increasingly 
larger datasets.

Unsurprisingly, given that the total amount of power 
used to train AI systems has increased over time, so 
has the amount of carbon emitted by the models. Many 
factors determine the amount of carbon emitted by AI 
systems, including the number of parameters in a model, 
the power usage effectiveness of a data center, and the 
grid carbon intensity.30

1.4 Hardware
Chapter 1: Research and Development
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Figure 1.4.6

Highlight:  

Energy Efficiency and Environmental Impact (cont’d)

30 Power usage effectiveness (PUE) is a metric used to evaluate the energy efficiency of data centers. It is the ratio of the total amount of energy used by a computer data center facility, 
including air conditioning, to the energy delivered to computing equipment. The higher the PUE, the less efficient the data center.

energy efficiency = FLOP perWatt

Source: Artificial Intelligence Index Report 2025, Stanford University
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Challenges and (Current) Limitations of AI4QA
Resource Usage / Sustainability:

• Jevons-Paradoxon!

• Technical development that increases efficiency and resource needs
ultimately leads to a higher resource usage

• More efficient technology→ less costs→ higher usage and adoption
→ elimination of efficiency gains

Source: [AI-generated for illustrative purposes]
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Challenges and (Current) Limitations of AI4QA
Technical Debt:

• "...ease of Al-generated code is creating a seductive trap – while it feels
productive to quickly generate new code, we’re actually building technical
debt faster than ever before" [Steve Haupt, andrena objects]

• Instead of working DRY (Don’t Repeat Yourself) we are constantly tempted
to duplicate

• Adding "generated" code is less work compared to refactoring existing code
→ Refactoring is "dying"
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Impact of AI4QA
TeamDynamics (in general when AI is used for IT tasks):

• Senior teammembers will become supervisors of the AIs

• Junior teammembers may benefit, but require continuous and accelerated
learning

⇒ AI as copilot; e.g., "pair programmer"?
28 / 36
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Impact of AI4QA
General effect of employing AI as a "copilot":

• Empirical assessment by Harvard Business School

• Average quality scores for tasks performed by individuals/teams with and
without AI Figure 2: Average Solution Quality

Notes: This figure displays the average quality scores for solutions across different groups, showing the relative

performance of AI-treated versus non-AI-treated groups with standard errors.

30

Source: The Cybernetic Teammate: A Field Experiment on Generative AI Reshaping Teamwork
and Expertise, Harvard BusinessWorking Paper No. 25-043
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Impact of AI4QA
AI skills:

• Need for skilled personnel to develop, implement, andmaintain
AI-powered QA tools

• Need to invest in training and development to ensure QA teams have
necessary skills to effectively utilize AI

• NB, the EU AI Act requires everybody to be adequately trained in AI if the
organization is employing AI
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Relevance of AI4QA in Research
Statistics from the two top-tier conferences on software testing and analysis.
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Finally, what about QA4AI?
Many future software systems will contain AI components

• ⇒ Relevance of SE [Menzies, 2020]:
◦ AI software mostly isn’t about AI [Sculley et al., 2015]:
Much of what we know about SE applies to AI

◦ AI software needs software engineers:
Software engineers are necessary to tend to AI systems

◦ Poor SE leads to poor AI:
AI tools suffer when SE is ignored

◦ Better SE leads to better AI:
AI tools benefit when core SE principles are applied

32 / 36

©
20
25
by
Pr
of
.D
r.
A.
M
et
zg
er



Motivation AI Fundamentals AI4QA Applications Discussion References

Finally, what about QA4AI?
• ⇒QA can be complex and time-consuming due to specifics of AI models

◦ How large must the test data sets be?
◦ How to handle the non-reproducibility of GenAI results?
◦ How tomeasure the "coverage" of AI models; e.g., can we use "neuron coverage"
similar to branch coverage?

◦ ...
◦ →Many significant challenges for joint SE and AI research!
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