

Open-Minded

Al-Assisted Business Process Monitoring (Tutorial)

Andreas Metzger Sevilla, September 02, 2025

Based on:

Information Systems
Volume 118, September 2023, 102254

Automatically reconciling the trade-off between prediction accuracy and earliness in prescriptive business process monitoring

Andreas Metzger 💍 , Tristan Kley , Aristide Rothweiler , Klaus Pohl 🖾

https://doi.org/10.1016/j.is.2023.102254

Slides available from:

https://adaptive-systems.org/images/documents/bpm-tutorial-25.pdf

- 1. I pose a question
- 2. You think about the answer
- 3. You discuss it with your peer
- 4. You reply online

https://pingo.coactum.de/events/053187

Q1: How do you assess your skill-level in BPM?

https://pingo.coactum.de/events/053187

Q2: How do you assess your skill-level in AI?

https://pingo.coactum.de/events/053187

Agenda

- 1. Foundations
- 2. Al for *Predictive* Monitoring
 - Recurrent neural networks
 - Ensemble learning
- 3. Al for *Prescriptive* Monitoring
 - Online deep reinforcement learning
 - Generative AI
- 4. Future Directions

Process Monitoring Data

Basic Machine Learning Principle

AI Taxonomy

1 Artificial Intelligence

Development of smart systems and machines that can carry out tasks that typically require human intelligence

2 Machine Learning

Creates algorithms that can learn from data and make decisions based on patterns observed

Require human intervention when decision is incorrect

3 Deep Learning

Uses an artificial neural network to reach accurate conclusions without human intervention

Al-assisted BPM: Supervised Learning

Al-assisted BPM: Reinforcement Learning

Al-assisted Predictive Monitoring: Typically Supervised Learning

Al-assisted Prescriptive Monitoring: Different Techniques

Q3: Why does it make sense to separate prediction from decision making?

https://pingo.coactum.de/events/053187

Public benchmark data sets to assess model performance

		Pos.	Class	Process	Process	Check-
Name	Pos. Class		Ratio	Instances	Variants	points
$\overline{\text{Cargo2000}}$	Delayed air cargo delivery		27%	3,942	144	7
Traffic	Unpaid traffic fine		46%	129,615	185	4
BPIC2012	Unsuccessful credit application		52%	13,087	$3,\!587$	23
BPIC2017	Unsuccessful credit application		59%	31,413	2,087	23

www.adaptive-systems.org

15

Agenda

- 1. Foundations
- 2. Al for *Predictive* Monitoring
 - Recurrent neural networks
 - Ensemble learning
- 3. Al for *Prescriptive* Monitoring
 - Online deep reinforcement learning
 - Generative AI
- 4. Future Directions

Challenge 1: Prediction accuracy

 "Predict as many true deviations as possible, while predicting as few false deviations as possible"

Prediction contingencies and adaptation decisions based on predictions.

	Prediction $\hat{y}_j = deviation$	Prediction $\hat{y}_j = no$ deviation
Actual $y = deviation$	True Positive (<i>TP</i>) ⇒ Necessary adaptation	False Negative (FN) ⇒ Missed adaptation
Actual $y = no deviation$	False Positive (FP) ⇒ Unnecessary adaptation	True Negative (TN) \Rightarrow No adaptation

Challenge 2: Prediction reliability

"in how far can I trust the prediction?"
 → "when should I act on a prediction?"

Reliability estimation

Challenge 3: Data encoding

- Classical prediction models (random forests) require encoding of event sequences into **fixed-length input vectors**
- Many different encoding choices

[Teinemaa et al. 2019 @ ACM Trans. Knowl. Discov. Data] https://doi.org/10.1145/3301300

[Tax et al. 2020 @ SoSym] https://doi.org/10.1007/s10270-020-00789-3

Recurrent Neural Networks (RNNs)

Pro

- High prediction accuracy → Challenge 1
 [Tax et. al. 2017 @ CAiSE; Metzger & Nebauer 2018 @SEAA]
- Arbitrary length process instances and predictions at any checkpoint (without sequence encoding)
 - → Challenge 2

Con (e.g., when compared to random forests)

- Long training time
- No native reliability estimates

RNN Ensembles

Pro

- Increased prediction accuracy → Challenge 1
- Computation of reliability estimates
 → Challenge 3

[Metzger & Föcker 2017 @ CAiSE] https://doi.org/10.1007/978-3-319-59536-8 28

Con (e.g., when compared to random forests)

• (Even longer) training time

Q4: What is the benefit of this way of computing reliability estimates?

https://pingo.coactum.de/events/053187

Agenda

- 1. Foundations
- 2. Al for *Predictive* Monitoring
 - Recurrent neural networks
 - Ensemble learning
- 3. Al for *Prescriptive* Monitoring
 - · Online deep reinforcement learning
 - Generative AI
- 4. Future Directions

Challenge 1: Prediction accuracy vs action earliness

- Prediction accuracy
 - False positive prediction
 → unnecessary adaptation
 - False negative prediction
 - → missed adaptation
- Action earliness
 - Later actions
 - → less time and options for process adaptation
 - Earlier actions
 - → higher risk of wrong process adaptation

Average Prediction Accuracy: **LSTM**, **RF** % of traces reaching prefix length *j*

Challenge 2: Concept drift

- Process "behavior" may change over time
 - E.g., due to changes in process environment

- Prediction accuracy may fluctuate
 - E.g., if prediction models are presented with unseen and out-of-sample process monitoring data

Mean absolute prediction error (MAE) per case

Challenge 3: Action selection / recommendation

- Principle design choices
 - Select from a set of predefined actions
 - Select and fine-tune action templates
 - Synthesize / generate new actions at run-time

Baseline Technique: Static Adaptation Decision

- Use average prediction accuracy to determine checkpoint $j_{fix} \rightarrow$ Challenge 1
 - j_{fix} = earliest prediction point with highest average accuracy

Con

- Requires testing phase during which average prediction accuracies are computed
- No alarms will be raised for cases that are shorter than j_{fix}
- Uses average prediction accuracy and thus does not take into account variances that might occur in the currently ongoing case.

Baseline Technique: Dynamic Adaptation Decision

- Use reliability estimate to determine which prediction to trust
- Use prediction of first checkpoint where $\rho_{\rm j}$ > threshold \rightarrow Challenge 1

[Metzger et al. 2019 @ CAiSE] https://doi.org/10.1007/978-3-030-21290-2 34

Baseline Technique: Empirical Thresholding

- Act on earliest prediction with reliability estimate > threshold
 → Challenge 1
- Dedicated training process to determine suitable threshold
 - Uses training data set (subset of event log)
 - Considers cost model to define adaptation costs (C_a), compensation costs (C_c) and penalty costs (C_p)

Costs $C(j) =$	Prediction $\hat{y}_j = deviation$				
	effective adaptation	non-effective adaptation			
Actual $y = deviation$	Ca	Ca	$C_{\rm p}$		
		$+ C_p$			
Actual $y = no \ deviation$	$C_{\rm a}$	C_{a}	0		
	$+ C_{c}$				

Online Deep Reinforcement Learning

- Learn action selection policy π to determine when to adapt → Challenge 1
 - Policy π gives action a_i in state s_i
 - Positive rewards r_j if action a_j was a good decision
- Learn π at <u>runtime</u>
 → Challenge 2

Online Deep Reinforcement Learning

- - Learn new knowledge vs leverage learned knowledge
 - Typical approach: ε-decay
 - Challenged by concept drift
- Reward engineering
 - Defining an effective reward function r

Online Deep Reinforcement Learning

- - Uses and optimizes parametrized stochastic action selection policy π
 - π represented as **Deep ANN**
 - Can natively handle non-stationarity and thus concept drifts → no need to tune ε
 - Can handle multi-dimensional, continuous state spaces
 - Generalizes well over unseen neighboring states

[Palm et al. 2020 @ CAiSE] https://doi.org/10.1007/978-3-030-49435-3 11

Online Deep Reinforcement Learning

Reward engineering needs to consider the different contingencies:

Costs $C(j) =$	Prediction $\hat{y}_j = deviation$	Prediction $\hat{y}_j = no \ deviation$		
	effective adaptation	non-effective adaptation		
Actual $y = deviation$	Ca	C _a + C _p	$C_{\rm p}$	
Actual $y = no$ deviation	C _a + C _c	Ca	0	
	Ada	otation	No Adaptation	

- To determine the rewards for the different contingencies, SOTA approaches make the following assumption:
 - "After a process adaptation, the original process outcome is still known"

[Branchi et al., 2022 @ BPM]: https://doi.org/10.1007/978-3-031-16171-1 9 [Dasht Bozorgi et al. 2023 @ InfoSys]: https://doi.org/10.1016/j.is.2023.102198

Q5: What is the problem with that assumption?

https://pingo.coactum.de/events/053187

35

Online Deep Reinforcement Learning

- Artificial curiosity to define rewards
 - Use <u>intrinsic</u> rewards (from <u>within</u> system) in addition to *extrinsic* rewards (from environment)

	Adaptation	No adaptation
Actual = Deviation Actual = No deviation	R = b(1-c) - 2d	R = -1 $R = +1.5$

- d: rate of adaptations among last seen 30 cases
 - → punishes high adaptation rates
 - → rewards exploring not raising alarms
- b: decreases linearly with <u>prefix-length</u>
 → prefer early alarms over late alarms
- c(d, v): curiosity modifier
 v = negative predictive value of last 100 non-adapted cases
 - \rightarrow high v = high accuracy in raising alarms \rightarrow no longer need to explore raising alarms later
 - \rightarrow small $d \rightarrow$ extrinsic rewards sufficient for learning

Online Deep Reinforcement Learning

Example (BPIC 2017):

red: normalized reward

blue: earliness (0 = end, 1 = beginning of process)

black: rate of alarms

green: rate of accurate alarms

Q6: What are the downsides of Online RL?

https://pingo.coactum.de/events/053187

Online Deep Reinforcement Learning

Potential directions to speed up Online RL

- Use of Meta-RL to reuse policies of similar learning problems
- Offline pre-training of RL model (e.g., using synthetic data generated from simulation models)
- Expose RL to "important" states determined using static analysis of simulation model

[Mohsen et al. 2025 @ SEAMS: https://doi.org/10.1109/SEAMS66627.2025.00009]

Generative Al

 Use LLM to generate adaptations at run-time

(e.g., like in [Li et al. 2024] for adaptive systems)

→ Challenge 3

Prompt engineering

• Few-shot, Chain-of-Thought, RAG, ...?

Data encoding

- Encoding numeric values into text?
- Adding event labels?

Use of context information

Consider process model?

Empirical Study

RQ: How do the different approaches compare?

Naïve LLM baseline:

- No advanced prompt engineering (such as CoT or RAG)
- No consideration of NL data (such as event labels or types)
- No consideration of context (such as process model)

		Relative number of situations when approach performs best			Average, relative cost savings						
Data Set	Model	Static	Dynamic	Empirical	RL	LLM	Static	Dynamic	Empirical	RL	LLM
BPIC12	LSTM	7%	42%	29%	64%	44%	16%	28%	25%	41%	28%
BPIC17	LSTM	0%	0%	47%	53%	/	47%	51%	48%	45%	/
Traffic	LSTM	16%	22%	0%	84%	/	42%	46%	41%	38%	/
Cargo	LSTM	7%	20%	60%	33%	/	11%	26%	23%	24%	/
Ave	erage	12%	21%	43%	44%	52%	5 29% 40% 34% 35% 38%		38%		
							37%				

- → No single approach performs best for all data sets and cost model configurations
- → More Al-augmented techniques tend to outperform simpler approaches

Agenda

- 1. Foundations
- 2. Al for *Predictive* Monitoring
 - Recurrent neural networks
 - Ensemble learning
- 3. Al for *Prescriptive* Monitoring
 - Online deep reinforcement learning
 - Generative AI
- 4. Future Directions

Future Directions

Generate photo of watches showing 12:00

Challenges of Generative AI (LLMs)

- How to cope with hallucinations and bias?
 - What kind of biases of the "training data" are perpetuated in BPM?
 - What impact do hallucinations have?

Gemini-2.5

GPT-5

- Resource usage / costs of LLMs
 - How to perform cost-benefit analysis?
- How to avoid data leakage/ data pollution?
 - How to retrieve suitable evaluation data?

Future Directions

Explainable Process Monitoring

- Addressed Concerns:
 - Trust: Understanding the 'why' builds confidence
 - Debugging: Identifying failures and performance issues becomes possible
 - Accountability: Assigning responsibility and implementing corrective actions
 - Bias Mitigation: Detecting and mitigating discriminatory outcomes.
 - Compliance: Meeting transparency demands of regulatory frameworks
- But: Current XAI Limitations:
 - Fail to capture BPM specifics (process constraints, contextual richness, causal dependencies, human interpretability)

[Fettke et al. 2025 @ PMAI-ECAI: https://doi.org/10.48550/arXiv.2507.23269] [Kubrak et al. 2024 @ BPM: https://doi.org/10.1007/978-3-031-70396-6 23]

Future Directions

Agentic Process Monitoring

- Agent realized via Al
 - Operates with a greater degree of autonomy
 - Capable of undertaking roles
 - Manages multi-step tasks
 - Achieves higher-level goals
 - Proactively collaborates with human developers or other agents

[Vu et al. 2025 @ Responsible BPM]: https://doi.org/10.48550/arXiv.2504.03693

[https://futureofwork.saltlab.stanford.edu/]

Thank You!

Research leading to these results received funding from the EU's Horizon 2020 research and innovation programme under grant agreements no.

731932 – TransformingTransport, 732630 – BDVe, 780351 – ENACT, 871493 – DataPorts, 101070455 – DYNABIC

Q7: How do you rate the tutorial?

https://pingo.coactum.de/events/053187