
SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Toward Self-Modifying Autonomous Business 
Process Systems (ABPs)

Achiya Elyasaf1, Andreas Metzger2, Sebastian Sardina3, Arik Senderovich4, 
Estefanía Serral Asensio5 ,Niek Tax6

1 Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Israel
2 paluno – Ruhr Institute for Software Technology, University of Duisburg-Essen, Germany
3 School of Computing Technologies, RMIT University, Melbourne, Australia
4 School of Information Technology, York University, Toronto, Canada
5 Research Centre for Information Systems Engineering (LIRIS), KU Leuven, Belgium
6 Meta, London, United Kingdom

Presented at PMAI25 - 4th International Workshop on 
Process Management in the AI era, October 2025, Bologna, 
Italy, collocated with ECAI 2025



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger 2

• Background and Motivation

• Taxonomy

• Challenges

• Conclusion

Software Engineering



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Motivation

Dagstuhl Seminar 25192

AUTOBIZ: Pushing the Boundaries of AI-Driven 
Process Execution and Adaptation

May 04 – May 09, 2025

https://www.dagstuhl.de/25192

3

Ideation @ Dagstuhl

https://www.dagstuhl.de/25192


SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Background

4

AI-augmented Business Processes

https://apromore.com/blog/enhancing-operational-excellence-with-augmented-business-process-management

Autonomous business processes := next generation of AI-Augmented business processes
• Self-executing, (pro)active, agentic, …
• Leveraging advanced AI/ML 
• Operate with minimal to no human intervention 

EVOLVEADAPT

https://apromore.com/blog/enhancing-operational-excellence-with-augmented-business-process-management


SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Background

5

BPM Life-Cycle

DESIGN
Conceptualize

MODEL
Visualize

MONITOR
Track KPIs

MODIFY

Optimize

• Identify tasks and process elements

• Define expected process outcomes

• Determine constraints

• Use modelling language to „formalize“ process

• Map task sequences

• Identify bottlenecks

• Put into action

• Manual + automated task execution

• Deliver value

• Collect KPI data
• Track and predict process quality

• Predictive monitoring

• Continuous improvement

• Make adjustments to model or running process

• Prescriptive monitoring

EXECUTE
Enact

INSTANTIATE

Map

• Map tasks to resources (in an optimal fashion)

• Consider actual process environment

• Plan sequence of tasks

ADAPT

EVOLVE



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Motivational Example

Scenario: A large company operates an 
automated warehouse

Process: Fleets of robots retrieve and transport 
shelves (pods) to human pickers

Problem: During the busy Christmas season, a 
robot malfunctions, crashes, and thus blocks an 
aisle

→ This single event may trigger two distinct 
types of modification...

6

The Automated Warehouse



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Motivational Example

Immediate Response:
• Nearby robots instantly reroute their paths to avoid the 

blocked aisle
• The pending order is reassigned to a functioning robot
• Human workers receive updated instructions

→ This is an ADAPTATION:
• A short-term, instance-specific modification
• It addresses an immediate, unforeseen issue
• It does not alter the underlying process model

7

The Automated Warehouse

ADAPT



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Motivational Example

Longer-term Analysis:
• The warehouse system logs the failure event 

for review
• Engineers (or the system) discover a pattern: 

similar failures occur after ~1,000 picks

• A new maintenance rule is introduced: 
"Mandate preemptive inspection after every 
900 operations"

→ This is an EVOLUTION:
• A long-term modification of the 

process logic/model
• It's informed by aggregated insights and 

patterns over time
• It affects all future instances of the process

8

The Automated Warehouse

EVOLVE



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger 9

• Background and Motivation

• Taxonomy

• Challenges

• Conclusion

Software Engineering



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Taxonomy

Dimensions of 

Modifications

Dimension 1:

Adaptation vs.

Evolution

Dimension 2:

Task vs. Flow

vs. Process

Dimension 3:

Reactive vs.

Proactive

Dimension 5:

Planned vs.

Emergent

Dimension 4:

Human-Driven vs. Autonomous

(Level of Autonomy)

10

Overview



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Taxonomy

11

Dimension 1:
Adaptation vs.

Evolution

Dimension 2:
Task vs. Flow
vs. Process

Dimension 3:
Reactive vs.

Proactive

Dimension 5:
Planned vs.
Emergent

Dimension 4:
Human-Driven vs. Autonomous

(Level of Autonomy)

Self -Adaptation Logic

Knowledge

Analyze Plan

Monitor Execute

BPM System

(Running Processes)

Environment
ADAPTOBSERVE

Event Log Process Model

RECORD

UPDATE

EVOLVE



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Taxonomy

Defines scope and impact of modification

Task-level: Modifies how individual tasks are performed
• Example: Changing a task's duration, logic, or resource assignment

Control Flow-level: Adjusts the routing or sequencing of tasks
• Example: Rerouting orders, skipping tasks (like the warehouse robots)

Process-level: Alters the entire process structure or its central resources
• Example: Introducing new roles, changing coordination logic, or revising the maintenance 

schedule

12

Dimension 1:
Adaptation vs.

Evolution

Dimension 2:
Task vs. Flow
vs. Process

Dimension 3:
Reactive vs.

Proactive

Dimension 5:
Planned vs.
Emergent

Dimension 4:
Human-Driven vs. Autonomous

(Level of Autonomy)



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Taxonomy

Defines trigger of modification

Reactive: Modification in response to event(s) or failure(s)

• Examples: robot malfunction, process bottleneck, …

Proactive: Modification based on forecasts or predictions 

• Examples: scheduling maintenance before a predicted failure, updating process model before 
release of AI Act, …

13

Dimension 1:
Adaptation vs.

Evolution

Dimension 2:
Task vs. Flow
vs. Process

Dimension 3:
Reactive vs.

Proactive

Dimension 5:
Planned vs.
Emergent

Dimension 4:
Human-Driven vs. Autonomous

(Level of Autonomy)



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Taxonomy

Defines reason for modification

Planned: Deliberate, top-down redesign 

• Enhansive

• Example: capturing new customer requirements in the business process

• Adaptive (≠ Adaptation)

• Example: rolling out a new process model to capture AI Act

Emergent: Arises bottom-up from past process observations

• Corrective
• Example: process that always adapts due to failed task → change task/process model

• Perfective
• Example: improving process performance 

14

Dimension 1:
Adaptation vs.

Evolution

Dimension 2:
Task vs. Flow
vs. Process

Dimension 3:
Reactive vs.

Proactive

Dimension 5:
Planned vs.
Emergent

Dimension 4:
Human-Driven vs. Autonomous

(Level of Autonomy)

Substructure based on 
different types of 

maintenance in software
engineering



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Taxonomy

Defines autonomy level of modification, such as

Level 0: No Automation
• All tasks are fully manual
• Users detect, decide, and implement the modification

Level 1: Process Assistance
• ABPs provide recommendations or highlight anomalies (e.g., predictive & prescriptive monitoring)

Level 2: Partial Autonomy
• ABPs independently execute isolated tasks within predefined boundaries

Level 3: Contextual Autonomy

• ABPs autonomously perform most tasks and orchestrate flows to achieve overall foals

• Human intervention only in exceptional cases

15

Dimension 1:
Adaptation vs.

Evolution

Dimension 2:
Task vs. Flow
vs. Process

Dimension 3:
Reactive vs.

Proactive

Dimension 5:
Planned vs.
Emergent

Dimension 4:
Human-Driven vs. Autonomous

(Level of Autonomy)



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger 16

• Background and Motivation

• Taxonomy

• Challenges

• Conclusion

Software Engineering



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Challenges

When to handover control?

• When to shift control between ABPs and humans?

• → learning to defer

How to validate?

• How can user validation be incorporated into real-time 
adaptation without bottle-necking autonomy of ABPs?

• → explainable ABPs

How to align goals?

• How can ABPSs optimize multiple objectives while remaining 
within formal and ethical constraints?

How to ensure quality?

• What are the data quality and coverage thresholds for safe, 
autonomous decision-making in ABPs?

• How to evaluate the success or failure of modifications when 
human validation is unavailable?

17

1: Governance, Oversight, and Human Interaction



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Challenges

Learning from Experience:

• How can ABPSs continuously record adaptations and assess their 
effectiveness over time?

Safe Generalization:

• What metrics and techniques enable an ABPS to safely generalize learned 
behavior across varying contexts? 

• How to avoid overgeneralization from too few instances?

Bounded Knowledge:

• Retaining or analyzing complete history of long-running or high-
frequency processes might not be feasible

• How can an ABPs maintain bounded knowledge representations (e.g., 
summaries, sliding windows)?

18

2: Continuous Learning and Adaptation Management



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Challenges

Differentiating Uncertainty:

• How can ABPs differentiate / handle epistemic and aleatoric 
uncertainty during execution?

• Aleatoric: Inherent randomness 
(e.g., "how long will this task take?").

• Epistemic: Lack of knowledge 
(e.g., "what will happen if I try this new route?").

Quantifying Uncertainty:

• How can ABPs combine qualitative and quantitative 
uncertainty metrics for robust decision-making?

• Knowing the level and type of uncertainty is key to 
deciding when to act vs. when to defer to a human.

Communicating Uncertainty:

• What are effective representations of uncertainty (e.g., 
using probabilistic or fuzzy paradigms)?

• How should ABPs communicate uncertainty and associated 
risk to users in a transparent and actionable way?

19

3: Modeling and Measuring Uncertainty



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger 20

• Background and Motivation

• Taxonomy

• Challenges

• Conclusion

Software Engineering



SOFTWARE SYSTEMS ENGINEERING
Prof. Dr. Andreas Metzger

Conclusion

We defined: Self-modification in ABPs, distinguishing adaptation (short-term) from evolution (long-term)

We proposed: Taxonomy for modifications in ABPs

We identified 3 groups of core research challenges:
1. Governance & Human Oversight
2. Continuous Learning & Adaptation Management
3. Uncertainty Modeling & Communication

Future Vision: ABPs as 

• Collaborative, transparent agents 

• Balancing autonomy with accountability,

• Integrating AI, ML, XAI, and process mining

21


