

Toward Self-Modifying Autonomous Business Process Systems (ABPs)

Achiya Elyasaf¹, **Andreas Metzger²**, Sebastian Sardina³, Arik Senderovich⁴, Estefanía Serral Asensio⁵, Niek Tax⁶

⁶ Meta, London, United Kingdom

Presented at PMAI25 - 4th International Workshop on Process Management in the AI era, October 2025, Bologna, Italy, collocated with ECAI 2025

¹ Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Israel

² paluno – Ruhr Institute for Software Technology, University of Duisburg-Essen, Germany

³ School of Computing Technologies, RMIT University, Melbourne, Australia

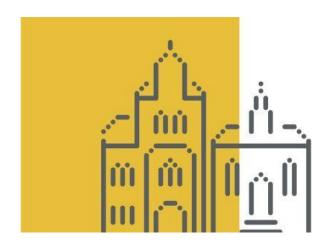
⁴ School of Information Technology, York University, Toronto, Canada

⁵ Research Centre for Information Systems Engineering (LIRIS), KU Leuven, Belgium

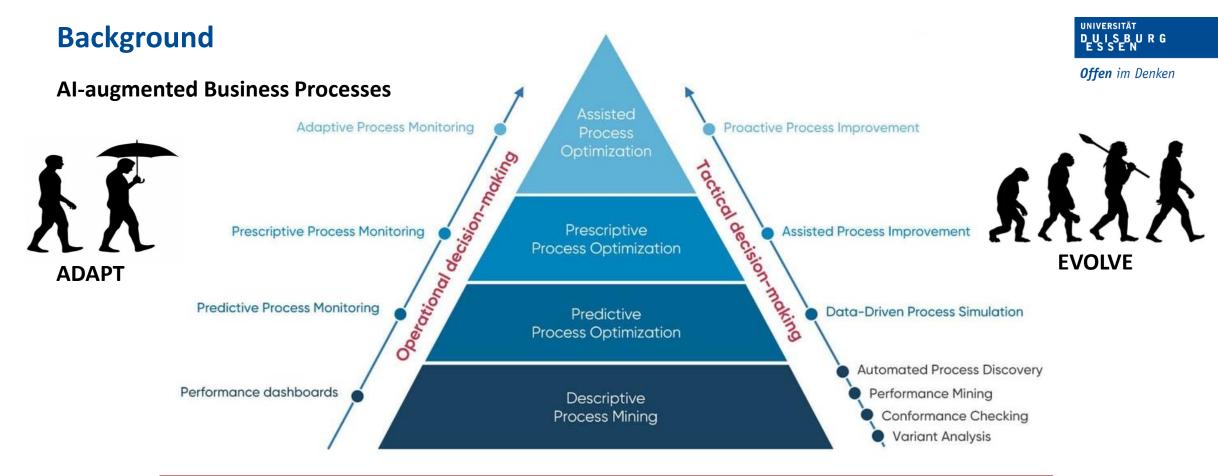
- Background and Motivation
- Taxonomy
- Challenges
- Conclusion

Motivation

Offen im Denken


Ideation @ Dagstuhl

Dagstuhl Seminar 25192


AUTOBIZ: Pushing the Boundaries of AI-Driven Process Execution and Adaptation

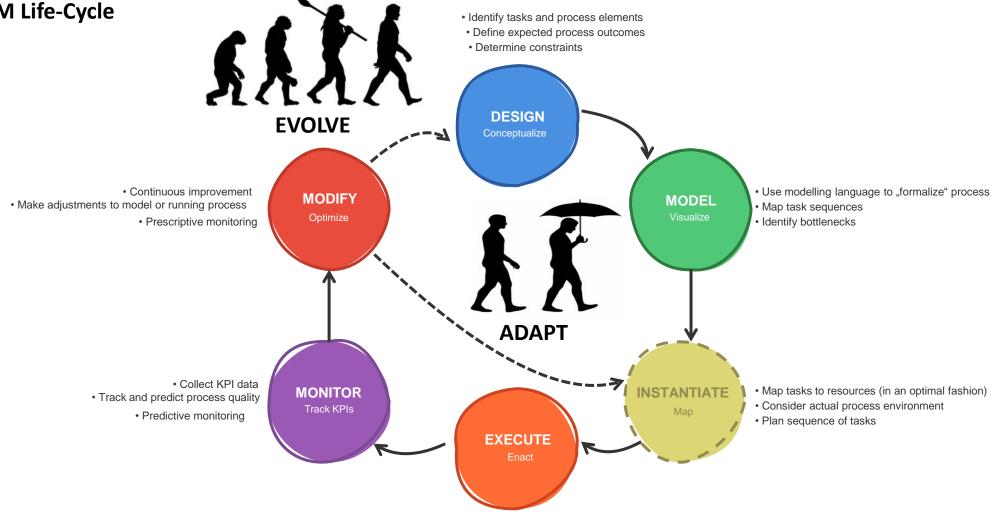
May 04 – May 09, 2025

https://www.dagstuhl.de/25192

Autonomous business processes := next generation of Al-Augmented business processes

- Self-executing, (pro)active, agentic, ...
- Leveraging advanced AI/ML
- Operate with minimal to no human intervention

https://apromore.com/blog/enhancing-operational-excellence-with-augmented-business-process-management



Prof. Dr. Andreas Metzger

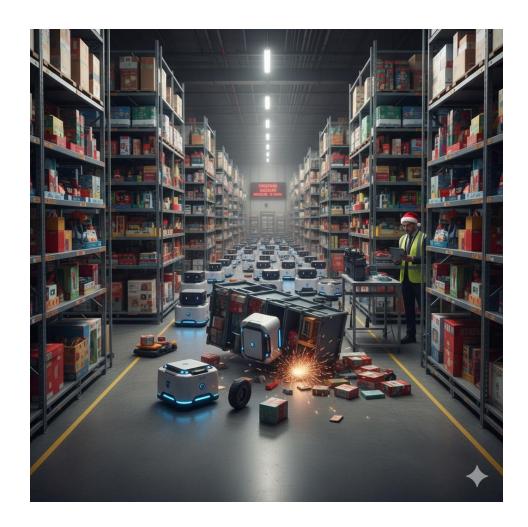
Background

- Put into action
- Manual + automated task execution
- Deliver value

Motivational Example

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken


The Automated Warehouse

Scenario: A large company operates an automated warehouse

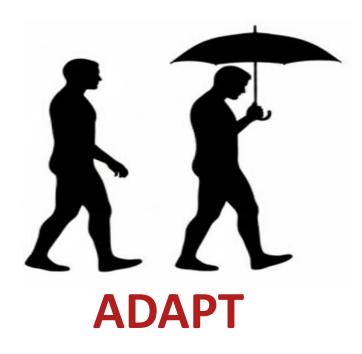
Process: Fleets of robots retrieve and transport shelves (pods) to human pickers

Problem: During the busy Christmas season, a robot malfunctions, crashes, and thus blocks an aisle

→ This single event may trigger two distinct types of modification...

Motivational Example

Offen im Denken


The Automated Warehouse

Immediate Response:

- Nearby robots instantly **reroute** their paths to avoid the blocked aisle
- The pending order is **reassigned** to a functioning robot
- Human workers receive updated instructions

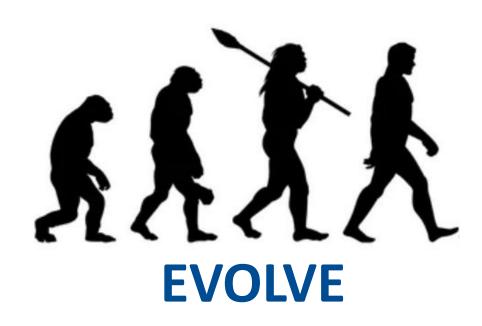
→ This is an ADAPTATION:

- A short-term, instance-specific modification
- It addresses an immediate, unforeseen issue
- It does not alter the underlying process model

Motivational Example

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken


The Automated Warehouse

Longer-term Analysis:

- The warehouse system logs the failure event for review
- Engineers (or the system) discover a pattern: similar failures occur after ~1,000 picks
- A new maintenance rule is introduced:
 "Mandate preemptive inspection after every 900 operations"

→ This is an EVOLUTION:

- A long-term modification of the process logic/model
- It's informed by aggregated insights and patterns over time
- It affects **all future instances** of the process

- Background and Motivation
- Taxonomy
- Challenges
- Conclusion

Offen im Denken

Overview

Dimensions of Modifications

Dimension 1:

Adaptation vs. Evolution

Dimension 2:

Task vs. Flow vs. Process

Dimension 3:

Reactive vs. Proactive

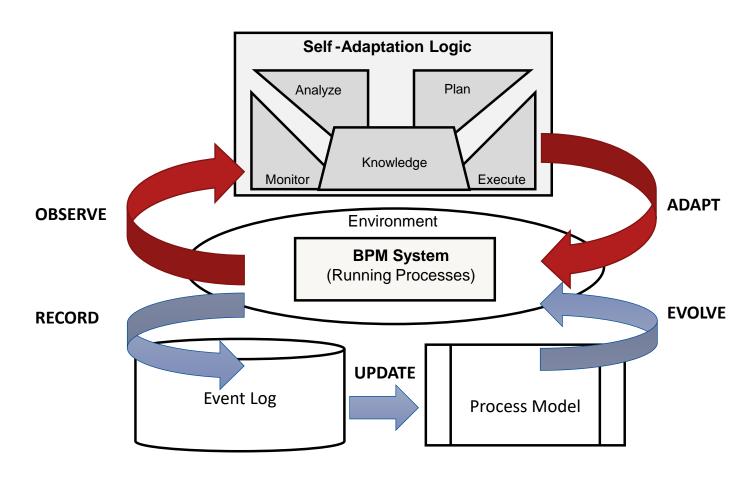
Dimension 5:

Planned vs. Emergent Dimension 4: **Human-Driven vs. Autonomous**

(Level of Autonomy)

Offen im Denken

Dimension 1:


Adaptation vs.

Evolution

Dimension 2: Task vs. Flow vs. Process Dimension 3:
Reactive vs.
Proactive

Dimension 5: Planned vs. Emergent

Dimension 4:
Human-Driven vs. Autonomous
(Level of Autonomy)

Offen im Denken

Dimension 1:

Adaptation vs.

Evolution

Dimension 2: Task vs. Flow vs. Process

Dimension 3:
Reactive vs.
Proactive

Dimension 5: Planned vs. Emergent

Dimension 4: **Human-Driven vs. Autonomous**(Level of Autonomy)

Defines scope and impact of modification

Task-level: Modifies how individual tasks are performed

• Example: Changing a task's duration, logic, or resource assignment

Control Flow-level: Adjusts the routing or sequencing of tasks

Example: Rerouting orders, skipping tasks (like the warehouse robots)

Process-level: Alters the *entire process structure* or its central resources

• Example: Introducing new roles, changing coordination logic, or revising the maintenance schedule

Offen im Denken

Dimension 1:

Adaptation vs.
Evolution

Dimension 2: Task vs. Flow vs. Process Dimension 3:
Reactive vs.
Proactive

Dimension 5: Planned vs. Emergent

Dimension 4: **Human-Driven vs. Autonomous**(Level of Autonomy)

Defines trigger of modification

Reactive: Modification in response to event(s) or failure(s)

• Examples: robot malfunction, process bottleneck, ...

Proactive: Modification based on forecasts or predictions

• Examples: scheduling maintenance before a predicted failure, updating process model before release of AI Act, ...

Offen im Denken

Dimension 1:

Adaptation vs.

Evolution

Dimension 2: Task vs. Flow vs. Process

Dimension 3:
Reactive vs.
Proactive

Dimension 5: Planned vs. Emergent

Defines reason for modification

Planned: Deliberate, top-down redesign

- Enhansive
 - Example: capturing new customer requirements in the business process
- Adaptive (≠ Adaptation)
 - Example: rolling out a new process model to capture AI Act

different types of maintenance in software engineering

Substructure based on

Dimension 4:

Human-Driven vs. Autonomous

(Level of Autonomy)

Emergent: Arises bottom-up from past process observations

- Corrective
 - Example: process that always adapts due to failed task → change task/process model
- Perfective
 - Example: improving process performance

Offen im Denken

Dimension 1:

Adaptation vs.

Evolution

Dimension 2: Task vs. Flow vs. Process

Dimension 3: Reactive vs. Proactive Dimension 5: Planned vs. Emergent

Dimension 4: Human-Driven vs. Autonomous (Level of Autonomy)

Defines autonomy level of modification, such as

Level 0: No Automation

- All tasks are fully manual
- Users detect, decide, and implement the modification

Level 1: Process Assistance

ABPs provide recommendations or highlight anomalies (e.g., predictive & prescriptive monitoring)

Level 2: Partial Autonomy

ABPs independently execute isolated tasks within predefined boundaries

Level 3: Contextual Autonomy

- ABPs autonomously perform most tasks and orchestrate flows to achieve overall foals
- Human intervention only in exceptional cases

- Background and Motivation
- Taxonomy
- Challenges
- Conclusion

Challenges

Offen im Denken

1: Governance, Oversight, and Human Interaction

When to handover control?

- When to shift control between ABPs and humans?
 - → learning to defer

How to validate?

- How can user validation be incorporated into real-time adaptation without bottle-necking autonomy of ABPs?
 - → explainable ABPs

How to align goals?

 How can ABPSs optimize multiple objectives while remaining within formal and ethical constraints?

How to ensure quality?

- What are the data quality and coverage thresholds for safe, autonomous decision-making in ABPs?
- How to evaluate the success or failure of modifications when human validation is unavailable?

Challenges

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

2: Continuous Learning and Adaptation Management

Learning from Experience:

 How can ABPSs continuously record adaptations and assess their effectiveness over time?

Safe Generalization:

- What metrics and techniques enable an ABPS to safely generalize learned behavior across varying contexts?
- How to avoid overgeneralization from too few instances?

Bounded Knowledge:

- Retaining or analyzing complete history of long-running or highfrequency processes might not be feasible
- How can an ABPs maintain bounded knowledge representations (e.g., summaries, sliding windows)?

Challenges

Offen im Denken

3: Modeling and Measuring Uncertainty

Differentiating Uncertainty:


- How can ABPs differentiate / handle epistemic and aleatoric uncertainty during execution?
 - Aleatoric: Inherent randomness (e.g., "how long will this task take?").
 - Epistemic: Lack of knowledge (e.g., "what will happen if I try this new route?").

Quantifying Uncertainty:

- How can ABPs combine qualitative and quantitative uncertainty metrics for robust decision-making?
 - Knowing the level and type of uncertainty is key to deciding when to act vs. when to defer to a human.

Communicating Uncertainty:

- What are effective representations of uncertainty (e.g., using probabilistic or fuzzy paradigms)?
- How should ABPs communicate uncertainty and associated risk to users in a transparent and actionable way?

- Background and Motivation
- Taxonomy
- Challenges
- Conclusion

Conclusion

We defined: Self-modification in ABPs, distinguishing adaptation (short-term) from evolution (long-term)

Offen im Denken

We proposed: Taxonomy for modifications in ABPs

We identified 3 groups of core research challenges:

- 1. Governance & Human Oversight
- 2. Continuous Learning & Adaptation Management
- 3. Uncertainty Modeling & Communication

Future Vision: ABPs as

- Collaborative, transparent agents
- Balancing autonomy with accountability,
- Integrating AI, ML, XAI, and process mining

